Processing Vegetable Crop Disease Research Updates

Amanda Gevens, Stephen Jordan – UW-Madison Plant Pathology

Raw Products Committee Meeting
February 21, 2023
Zoom

1:15PM – Carrot foliar disease variety evaluation

1:30PM – Snap bean & kidney bean disease research

1:45PM – Sweet corn tar spot variety evaluation

CARROT VARIETY RESPONSE TO FOLIAR DISEASE

Amanda Gevens & Stephen Jordan
UW-Madison Plant Pathology

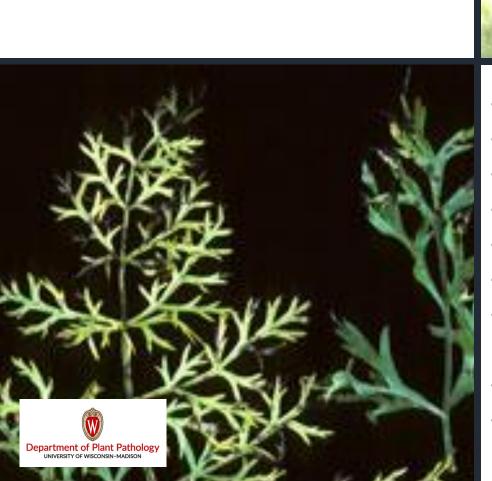
CARROT FOLIAR DISEASE

- Carrot leaf blights are caused by two fungal pathogens, *Alternaria dauci* and *Cercospora carotae*
- And one bacterial pathogen, Xanthomonas campestris pv. carotae
- Since any combination of the three pathogens may occur in a field, proper identification is important for employing the proper management strategies.

Alternaria Leaf Blight of Carrot Alternaria dauci

- Pathogen over seasons in debris and spreads regionally
- Leaflet margins and tips turn dark brown to black with a yellow halo
- Lesions first evident on the lower, older leaflets
- Many lesions growing together resulting in black, shriveled and
- Large lesions can also develop on the petioles and may girdle and kill leaves & roots not directly infected

Department of Plant Pathology

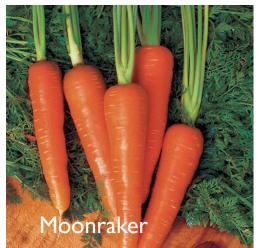

Cercospora Leaf Spot of Carrot

Cercospora carotae

- Pathogen resides in debris
- Leaves develop circular purplish brown spots with a gray center
- Leaf tissue around spots turns yellow, leaf margins may darken and curl upward
- Many leaf spots can grow together resulting in leaf wilt and death
- Lesions apparent throughout old and new leaves
- Roots are not directly infected, but may be small due to severe leaf damage

Bacterial Leaf Spot of Carrot

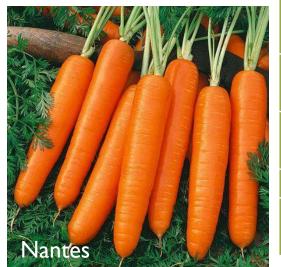
Xanthomonas campestris pv. carotae

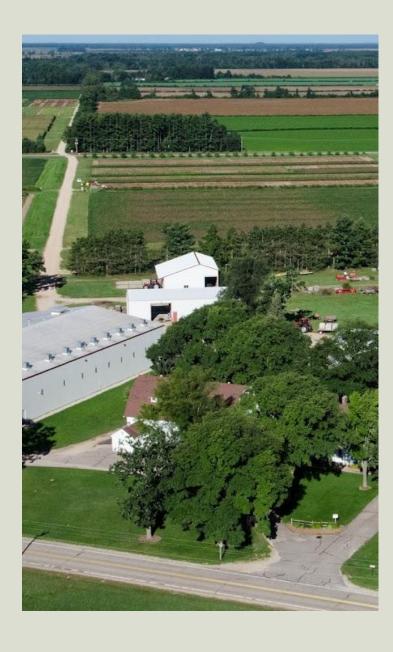


- Leaf spots start small, circular, light brown to tan
- Eventually spots become elongate; dark brown with yellow edges
- Infection progresses down the leaf
- · Severely infected leaves, yellow, wilt and die
- Lower leaf surface is very shiny, and may be sticky in wet weather
- Young leaves can become distorted
- Roots are not directly infected, but may be small due to severe leaf damage
- Foliar samples collected for diagnostic testing on September 20, 2022
- Xanthomonas presence confirmed in all cultivars

CARROT VARIETY TRIAL UW HANCOCK ARS - 2022

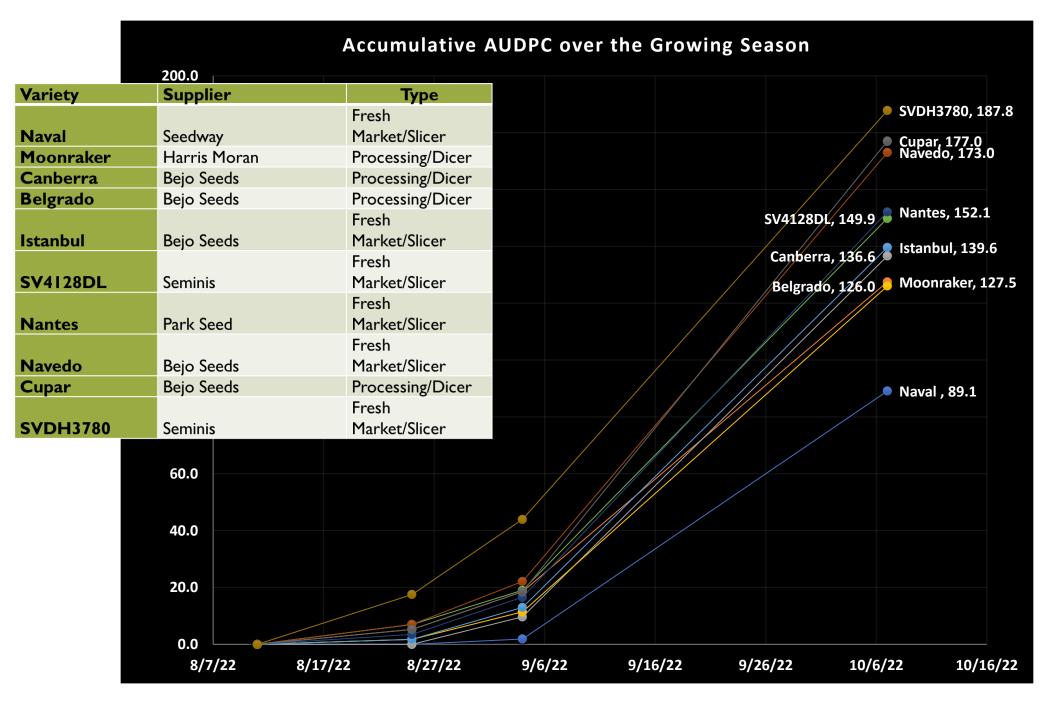
Variety	Supplier Type		
		Fresh	
Naval	Seedway	Market/Slicer	
Moonraker	Harris Moran	Processing/Dicer	
Canberra	Bejo Seeds	Processing/Dicer	
Belgrado	Bejo Seeds	Processing/Dicer	
		Fresh	
Istanbul	Bejo Seeds	Market/Slicer	
		Fresh	
SV4128DL	Seminis	Market/Slicer	
		Fresh	
Nantes	Park Seed	Market/Slicer	
		Fresh	
Navedo	Bejo Seeds	Market/Slicer	
Cupar	Bejo Seeds	Processing/Dicer	
		Fresh	
SVDH3780	Seminis	Market/Slicer	


CARROT VARIETY TRIAL UW HANCOCK ARS - 2022



Variety	Supplier	Туре	
		Fresh	
Naval	Seedway	Market/Slicer	
Moonraker	Harris Moran	Processing/Dicer	
Canberra	Bejo Seeds	Processing/Dicer	
Belgrado	Bejo Seeds	Processing/Dicer	
		Fresh	
Istanbul	Bejo Seeds	Market/Slicer	
		Fresh	
SV4128DL	Seminis	Market/Slicer	
		Fresh	
Nantes	Park Seed	Market/Slicer	
		Fresh	
Navedo	Bejo Seeds	Market/Slicer	
Cupar	Bejo Seeds	Processing/Dicer	
		Fresh	
SVDH3780	Seminis	Market/Slicer	

CARROT FOLIAR DISEASE CULTIVAR EVALUATION 2022


- UW Hancock ARS
- Seed sown at 250,000 seed/A on Jun 6
- 5 replicates arranged in a RCBD
- Each replicate plot was 4.5 ft wide (bed) with 3, 18-ft long seeding rows
- 19 in between rows on bed with 17 in from row edge to bed edge
- Naturally occurring inoculum
- No fungicides
- Disease evaluations on 11, 25 Aug; 4 Sep; 7 Oct

CARROT FOLIAR DISEASE CULTIVAR EVALUATION -RESULTS - 2022

- Precipitation for growing season was 17.16 in
- Supplemental irrigation at 11.7 in
- Disease pressure was average, but initiated in Aug later than typical
- Hot drier, windier weather prevailed in Jun and Jul

CARROT FOLIAR DISEASE CULTIVAR EVALUATION -RESULTS - 2022

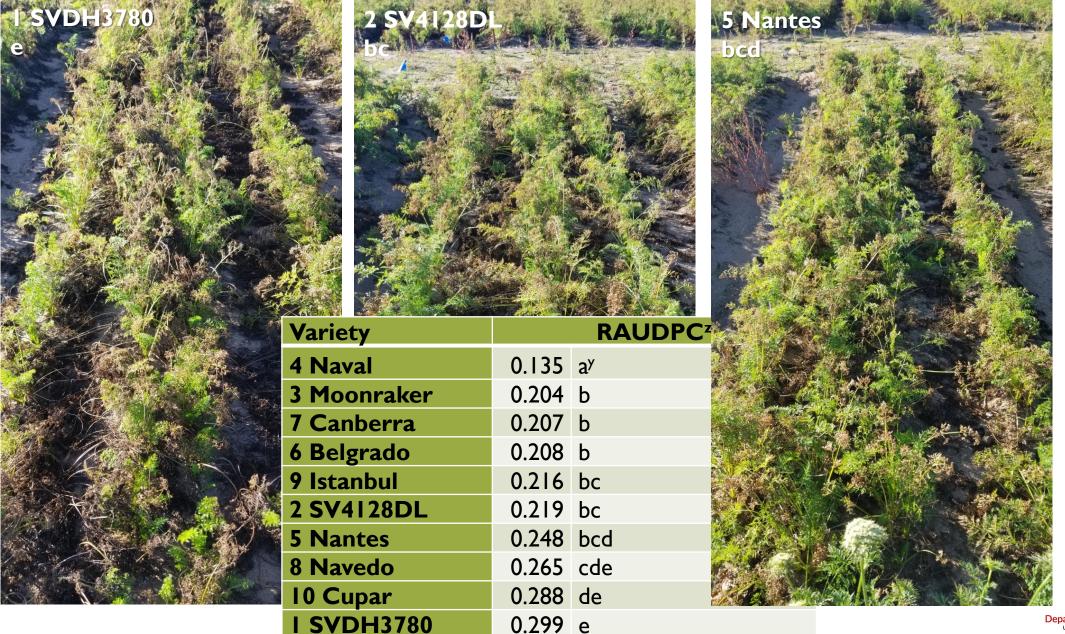
• Naval was the most resistant fresh market variety to foliar disease

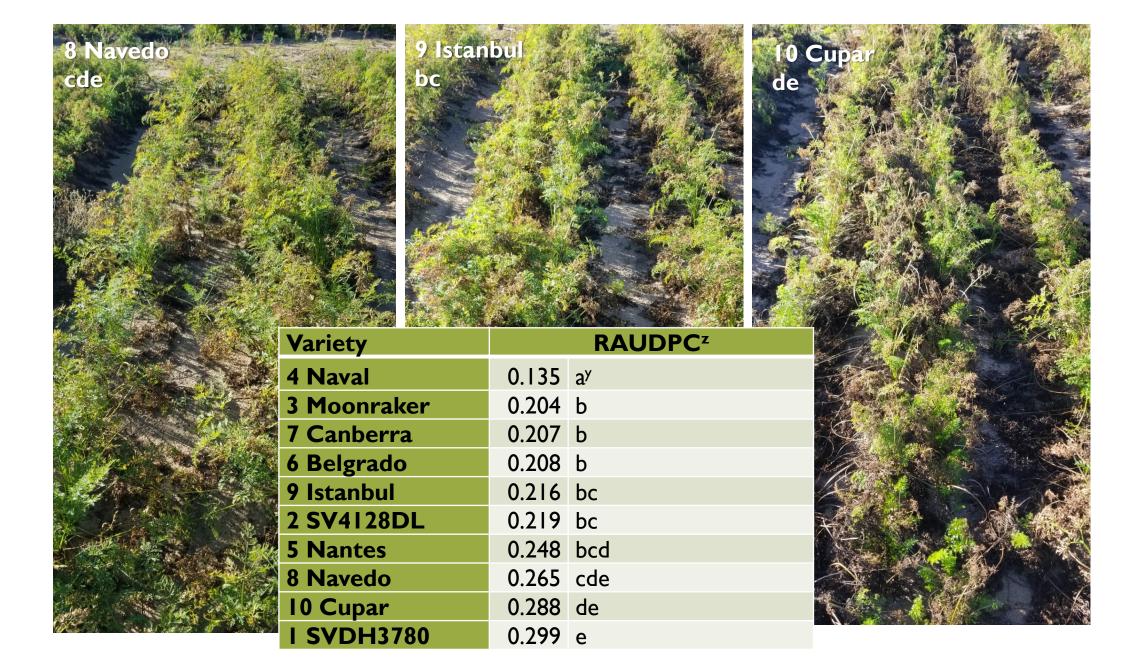
CARROT FOLIAR DISEASE CULTIVAR EVALUATION - RESULTS - 2022

• Moonraker, Belgrado, and Canberra were the most resistant processing varieties to foliar disease (Photo Oct 7)

CARROT VARIETY TRIAL UW HANCOCK ARS RESULTS - 2022

Variety	Supplier	Туре	RAUDPC ^z	
		Fresh		
4 Naval	Seedway	Market/Slicer	0.135	a ^y
3 Moonraker	Harris Moran	Processing/Dicer	0.204	b
7 Canberra	Bejo Seeds	Processing/Dicer	0.207	b
6 Belgrado	Bejo Seeds	Processing/Dicer	0.208	b
		Fresh		
9 Istanbul	Bejo Seeds	Market/Slicer	0.216	bc
		Fresh		
2 SV4128DL	Seminis	Market/Slicer	0.219	bc
		Fresh		
5 Nantes	Park Seed	Market/Slicer	0.248	bcd
		Fresh		
8 Navedo	Bejo Seeds	Market/Slicer	0.265	cde
10 Cupar	Bejo Seeds	Processing/Dicer	0.288	de
		Fresh		
I SVDH3780	Seminis	Market/Slicer	0.299	е





Thank you

We appreciate the Midwest Food Producers Association for funding We appreciate our vegetable seed industry and grower collaborators.

BEAN DISEASE RESEARCH UPDATES

Amanda Gevens & Stephen Jordan
UW-Madison Plant Pathology

Impacts of fungicide selection and placement in bean root rot management

Amanda Gevens & Stephen Jordan

Chair, Professor & Extension Plant Pathologist; Outreach Specialist, Dept. of Plant Pathology, Univ. of Wisconsin-Madison

Root Rot & Damping Off Diseases

Early season, stand-reducing diseases result from infection by one or more soilborne pathogens during periods of cool and wet soil

Fungi: Rhizoctonia solani, Fusarium spp.

Oomycetes: Aphanomyces euteiches, Pythium spp.

Root Rot & Damping Off Diseases Management Approaches

Varietal resistance

Crop rotation out of susceptible legume crops for ~3 years

Avoid planting during times when soil will remain consistently <~50°F and wet

Seed-applied or at-plant applied fungicides for reducing disease

Root Rot & Damping Off Diseases Research Objectives

MWFPA-funded project: Investigating seed-applied and at-plant fungicides for disease control in snap beans and kidney beans

- -initial years of work summarized (2018-2020)
- -recent years of work elaborated (2021-2022)
 - -in furrow and seed trt evaluations
 - -naturally inoculated trials
 - -inoculated field trial

Root Rot & Damping Off Diseases In-furrow Treatment Study Summary 2018

- No significant differences in emergence or yield when compared to nontreated control
- Highest yield and emergence for both Huntington and Hystyle cultivars with in-furrow treatment of Ridomil Gold (alone) and Ridomil Gold and Quadris in-furrow
- No significant differences in plant vigor or disease when compared to nontreated control (data not shown)
- Low disease pressure & no phytotoxicity observed for any treatments

Root Rot & Damping Off Diseases In-furrow & Seed Treatment Study Summary 2019

- Higher emergence and yield with Huntington (non-nodulating) compared to HyStyle (nodulating)
- Significant differences in emergence
- No significant differences in yield when compared to non-treated control, but numerically infurrow treatments were better
- Numerically, best treatments were in-furrow Ridomil Gold (alone), Ridomil Gold + Quadris
- Seed treatments of Ridomil Gold (alone) and Vitoflow were similar to Quadris in-furrow
- No significant differences in plant vigor or disease when compared to non-treated control
- Low disease pressure & no phytotoxicity for any treatments

Root Rot & Damping Off Diseases In-furrow & Seed Treatment Study Summary 2020

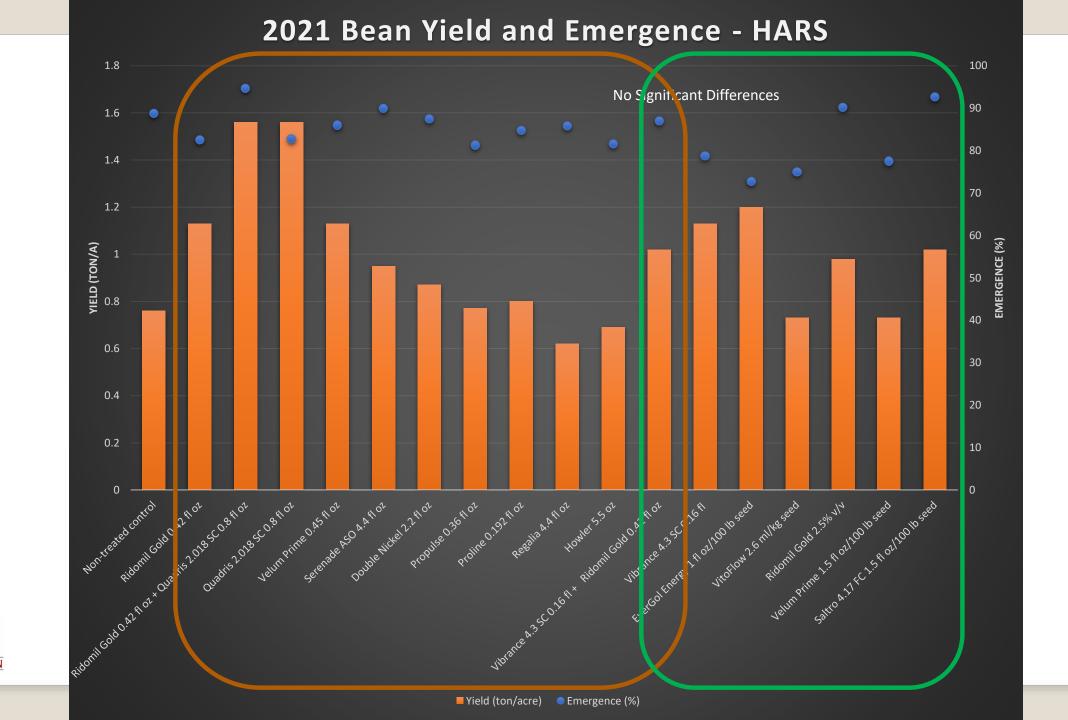
- Higher emergence and yield with Huntington compared to HyStyle
- No significant differences in emergence
- No significant differences in yield when compared to non-treated control, but numerically in-furrow treatments were better with exception of Velum Prime on seed on 'Huntington'
- Numerically, best treatments were in-furrow Ridomil Gold (alone),
 Ridomil Gold + Quadris
- Double Nickel in-furrow on 'Huntington' was highest yielding

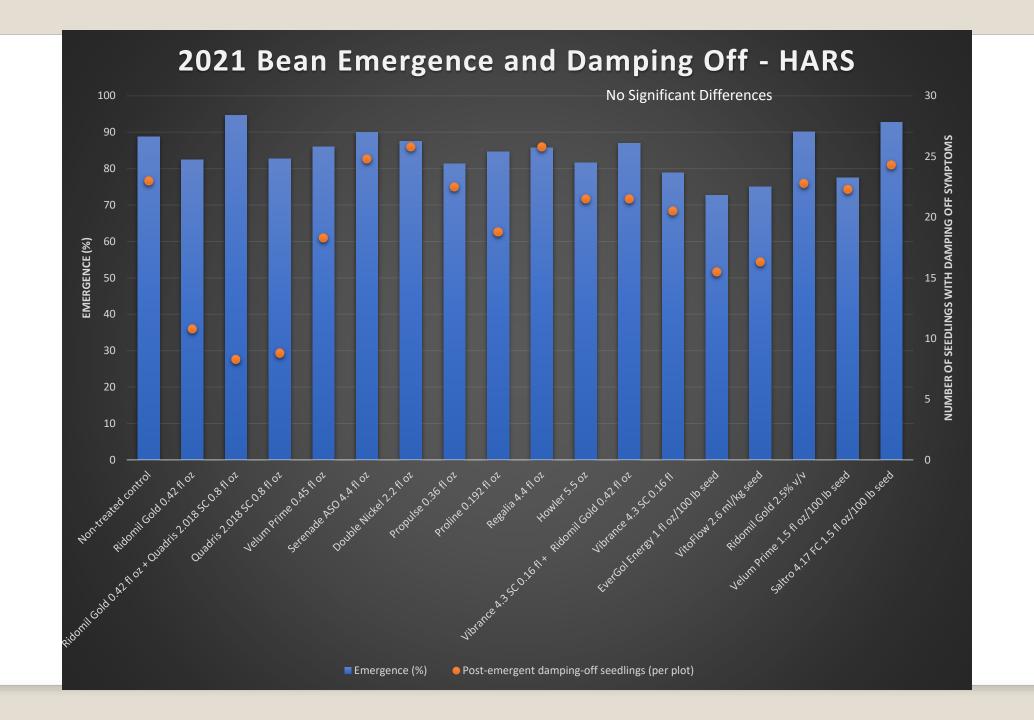
Low disease pressure & no phytotoxicity for any treatments

Root Rot & Damping Off Diseases In-furrow & Seed Treatment Study 2021

- Location: Hancock ARS 2021
- 'Huntington'
- Planting Date: 1 June
- Fungicides applied: seed applied treatments and drench in-row over the top of covered seed
- Data collected: emergence, plant vigor, foliar and root symptoms, and yield
- Harvested: 17 August

Root Rot & Damping Off Diseases 2021 Hancock ARS - 'Huntington'


Trt #	Treatment	Active ingredient FRAC	rate/1000 rf	Application Timing ^z	
1	Non-treated Control	NA		NA	
2	Ridomil Gold	mefenoxam 4	0.42 fl oz	In-furrow or IFAP	
3	Ridomil Gold + Quadris	mefenoxam 4 + azoxystrobin 11	0.42 fl oz + 0.8 fl oz	IFAP	
4	Quadris	azoxystrobin 11	0.8 fl oz	IFAP	
5	Velum Prime	fluopyram 7	0.45 fl oz	IFAP	
6	Serenade	Bacillus subtilis 713 QST	4.4 fl oz	IFAP	
7	Double Nickel	B. amyloliquefaciens D747	2.2 fl oz	IFAP	
8	Propulse	fluopyram 7 + prothioconazole 3	10.0 fl oz/A	IFAP	
9	Proline	prothioconazole 3	0.192 fl oz	IFAP	
10	Regalia	Reynoutria sachalinensis extract	4.4 fl oz	IFAP	
11	Howler	Pseudomonas chlorophis	5.5 oz	IFAP	
12	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment	
12	Ridomil Gold	mefenoxam 4	0.42 fl oz	IFAP	
13	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment	
14	14 Francal Francis	metalaxyl 4, penflufen 7,	metalaxyl 4, penflufen 7,		Seed Treatment
14	EverGol Energy	prothioconazole 3	1 fl oz/ 100 lb seed	Seed Heatment	
15	Vitoflow	carbathiim 7?, thiram M3	2.6 ml/kg seed	Seed Treatment	
16	Ridomil Gold	mefenoxam 4	2.5%v/v	Seed Treatment	
17	Velum Prime	fluopyram 7	1.5 fl oz/100 lb	Seed Treatment	
18	Saltro	pydiflumetofen 7	1.5 fl oz/100 lb	Seed Treatment	


Root Rot & Damping Off Diseases 2021 Hancock ARS - 'Huntington'

Trt #	Treatment	Active ingredient FRAC	rate/1000 rf	Application Timing ^z	
1	Non-treated Control	NA		NA	
2	Ridomil Gold	mefenoxam 4	0.42 fl oz	In-furrow or IFAP	
3	Ridomil Gold + Quadris	mefenoxam 4 + azoxystrobin 11	0.42 fl oz + 0.8 fl oz	IFAP	
4	Quadris	azoxystrobin 11	0.8 fl oz	IFAP	
5	Velum Prime	fluopyram 7	0.45 fl oz	IFAP	
6	Serenade	Bacillus subtilis 713 QST	4.4 fl oz	IFAP	
7	Double Nickel	B. amyloliquefaciens D747	2.2 fl oz	IFAP	
8	Propulse	fluopyram 7 + prothioconazole 3	10.0 fl oz/A	IFAP	
9	Proline	prothioconazole 3	0.192 fl oz	IFAP	
10	Regalia	Reynoutria sachalinensis extract	4.4 fl oz	IFAP	
11	Howler	Pseudomonas chlorophis	5.5 oz	IFAP	
12	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment	
12	Ridomil Gold	mefenoxam 4	0.42 fl oz	IFAP	
13	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment	
14	14 EVER(30) ENERGY 1	metalaxyl 4, penflufen 7,		Seed Treatment	
14		prothioconazole 3	1 fl oz/ 100 lb seed	Seed Heatment	
15	Vitoflow	carbathiim 7?, thiram M3	2.6 ml/kg seed	Seed Treatment	
16	Ridomil Gold	mefenoxam 4	2.5%v/v	Seed Treatment	
17	Velum Prime	fluopyram 7	1.5 fl oz/100 lb	Seed Treatment	
18	Saltro	pydiflumetofen 7	1.5 fl oz/100 lb	Seed Treatment	

WISCONSIN

Root Rot & Damping Off Diseases 2021 Summary Hancock ARS

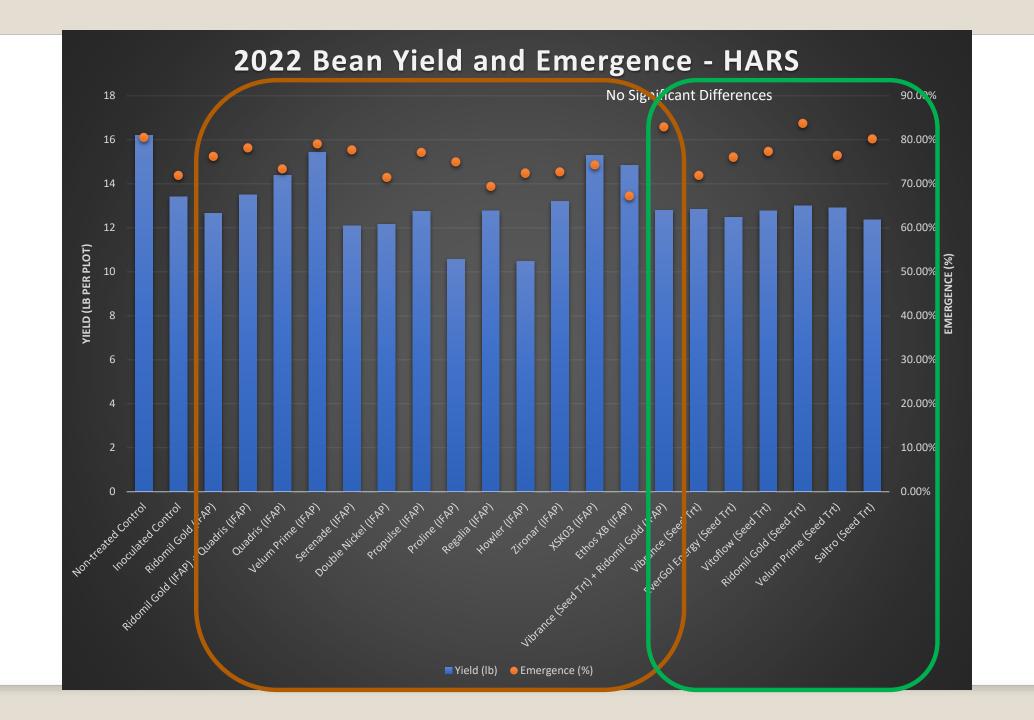
- While no significant differences in yield across treatments, we see trend of greater yield and emergence with specific in-furrow treatments: Ridomil Gold + Quadris, Quadris (alone), Velum Prime, and Ridomil Gold (alone)
- Velum Prime and Ridomil Gold performed better as in-furrow treatments than as seed-applied treatments
- Highest yielding treatments demonstrated lowest damping off 'counts'

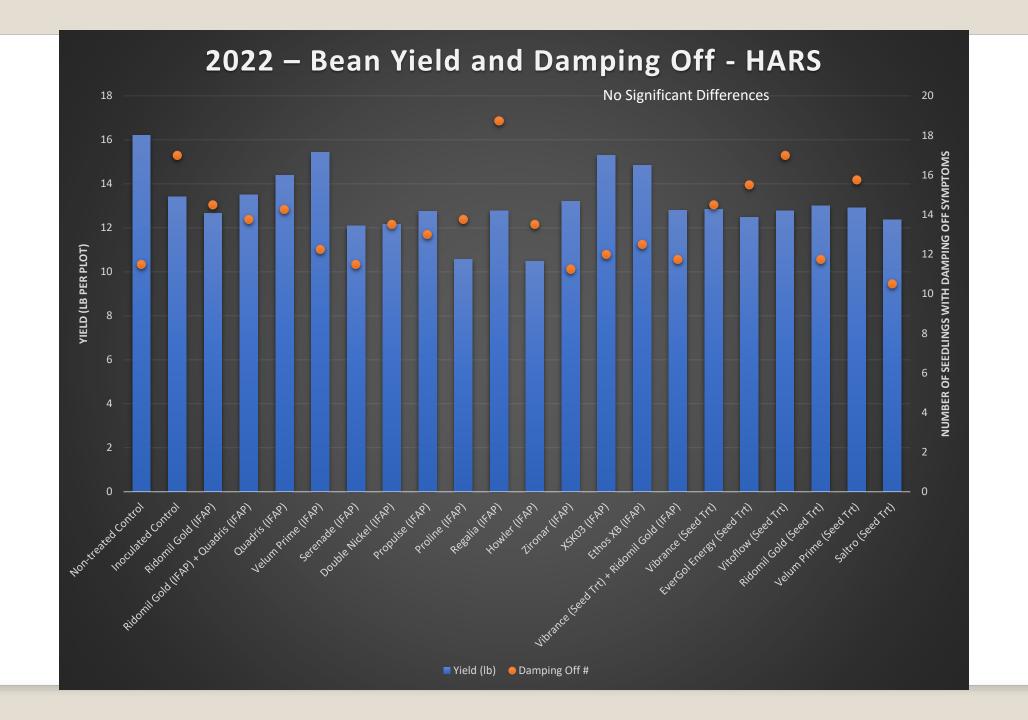
Biological fungicides had highest damping off 'counts' and relatively lowest yields

Root Rot & Damping Off Diseases 2022 Hancock ARS

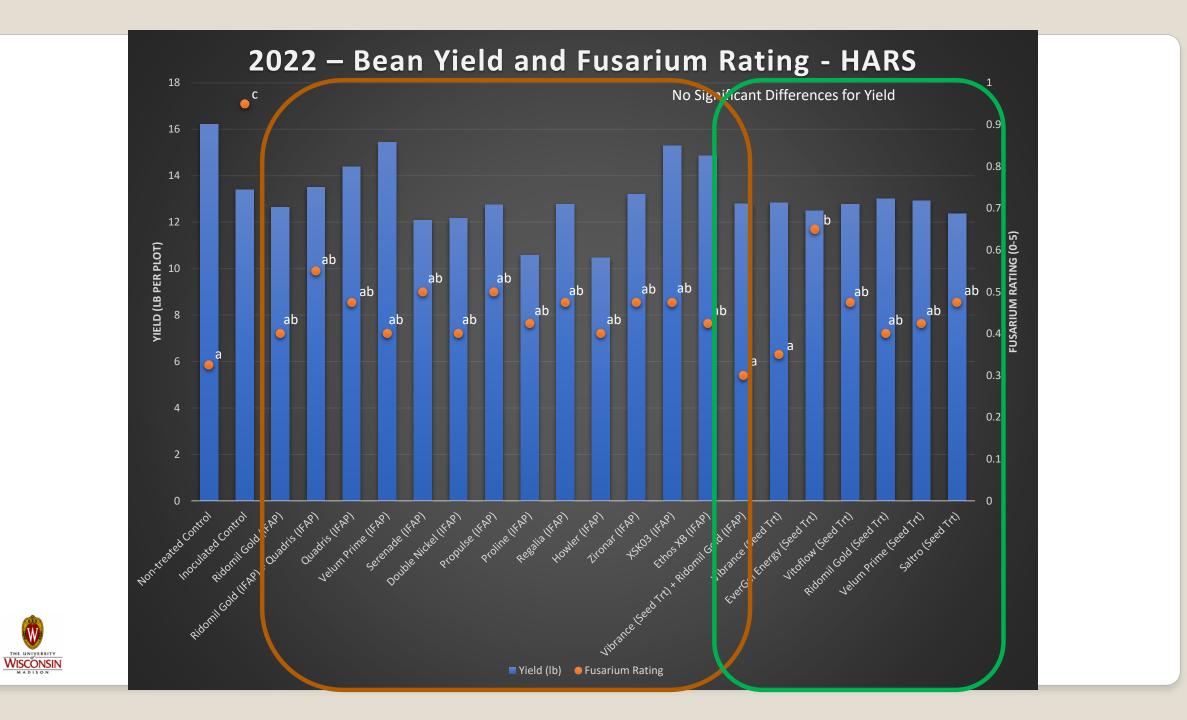
- New location, Former root rot nursery was too "hot"
- Inoculated trial Fusarium solani f.sp. Pisi
- Inoculum applied over top of seed row at time of planting (infested barley)
- Fusarium severity scale (0-5)
- 'Hystyle' bean cultivar

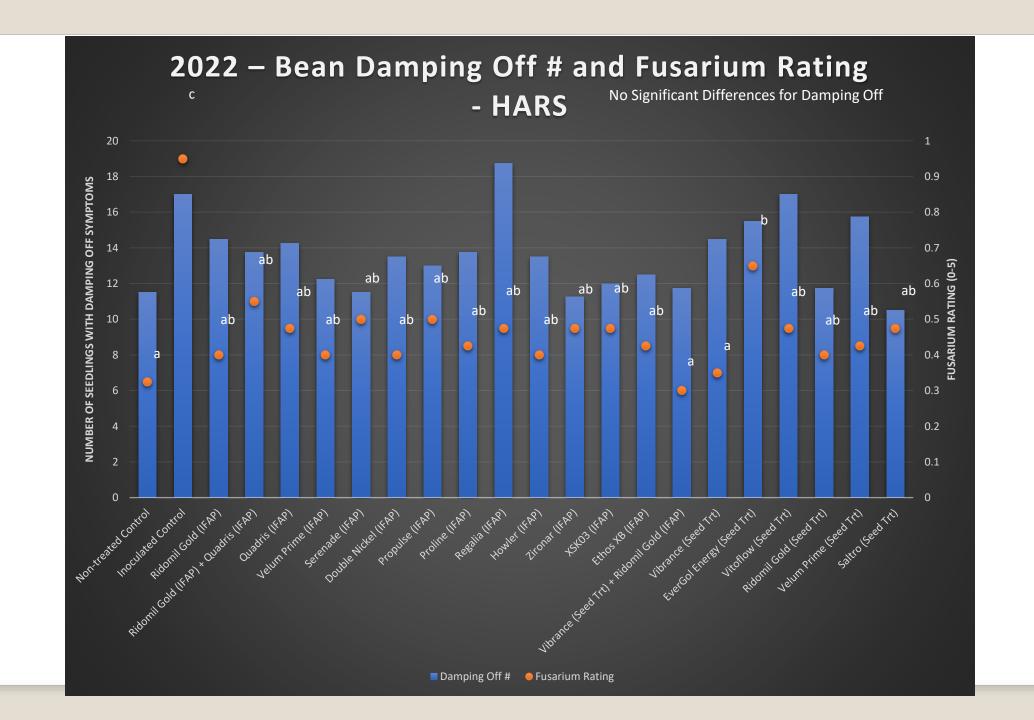
Root Rot & Damping Off Diseases 2022 Hancock ARS C27 - 'Hystyle'


	Trt #	Treatment	Active ingredient FRAC	rate/1000 rf	Application Timing ^z
	1	Non-treated Control	NA	Non-Inoculated	
	2	Non-treated Control	NA	Inoculated	NA
1	3	Ridomil Gold	mefenoxam 4	0.42 fl oz	In furrow
	4	Ridomil Gold + Quadris	mefenoxam 4 + azoxystrobin 11	0.42 fl oz + 0.8 fl oz	In furrow
	5	Quadris	azoxystrobin 11	0.8 fl oz	In furrow
	6	Velum Prime	fluopyram 7	0.45 fl oz	In furrow
	7	Serenade	Bacillus subtilis 713 QST	4.4 fl oz	In furrow
	8	Double Nickel	Bacillus amyloliquefaciens D747	2.2 fl oz	In furrow
	9	Propulse	fluopyram 7 + priothioconazole 3	10.0 fl oz/A	In furrow
	10	Proline	prothioconazole 3	0.192 fl oz	In furrow
	11	Regalia	Reynoutria sachalinensis extract	4.4 fl oz	In furrow
	12	Howler	Pseudomonas chlororaphis	5.5 oz	In furrow
	13	Zironar	Bacillus licheniformis + B. subtilis	6 fl oz/A	In furrow
	14	XSK03	Experimental	4 fl oz/A	In furrow
	15	Ethos XB	B. amyloliquefaciens D747	4 fl oz/A	In furrow
-	16	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment
	10	Ridomil Gold	mefenoxam 4	0.42 fl oz	In furrow
	17	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment
	18	EverGol Energy	metalaxyl 4, penflufen 7, priothioconazole 3	1 fl oz/ 100 lb seed	Seed Treatment
	19	Vitoflow	carbathiim 7?, thiram M3	2.6 ml/kg seed	Seed Treatment
	20	Ridomil Gold	mefenoxam 4	2.5%v/v	Seed Treatment
	21	Velum Prime	fluopyram 7	1.5 fl oz/100 lb	Seed Treatment
	22	Saltro	pydiflumetofen 7	1.5 fl oz/100 lb	Seed Treatment


Root Rot & Damping Off Diseases 2022 Hancock ARS C27 - 'Hystyle'

	Trt #	Treatment	Active ingredient FRAC	rate/1000 rf	Application Timing ^z
ļ	1	Non-treated Control	NA	Non-Inoculated	
	2	Non-treated Control	NA	Inoculated	NA
	3	Ridomil Gold	mefenoxam 4	0.42 fl oz	In furrow
	4	Ridomil Gold + Quadris	mefenoxam 4 + azoxystrobin 11	0.42 fl oz + 0.8 fl oz	In furrow
	5	Quadris	azoxystrobin 11	0.8 fl oz	In furrow
	6	Velum Prime	fluopyram 7	0.45 fl oz	In furrow
	7	Serenade	Bacillus subtilis 713 QST	4.4 fl oz	In furrow
	8	Double Nickel	Bacillus amyloliquefaciens D747	2.2 fl oz	In furrow
	9	Propulse	fluopyram 7 + priothioconazole 3	10.0 fl oz/A	In furrow
	10	Proline	prothioconazole 3	0.192 fl oz	In furrow
	11	Regalia	Reynoutria sachalinensis extract	4.4 fl oz	In furrow
	12	Howler	Pseudomonas chlororaphis	5.5 oz	In furrow
	13	Zironar	Bacillus licheniformis + B. subtilis	6 fl oz/A	In furrow
	14	XSK03	Experimental	4 fl oz/A	In furrow
	15	Ethos XB	B. amvloliauefaciens D747	4 fl oz/A	In furrow
	16	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment
	10	Ridomil Gold	mefenoxam 4	0.42 fl oz	In furrow
	17	Vibrance	sedaxane 7	0.16 fl oz/100 lb seed	Seed Treatment
	18	EverGol Energy	metalaxyl 4, penflufen 7, priothioconazole 3	1 fl oz/ 100 lb seed	Seed Treatment
	19	Vitoflow	carbathiim 7?, thiram M3	2.6 ml/kg seed	Seed Treatment
	20	Ridomil Gold	mefenoxam 4	2.5%v/v	Seed Treatment
	21	Velum Prime	fluopyram 7	1.5 fl oz/100 lb	Seed Treatment
	22	Saltro	pydiflumetofen 7	1.5 fl oz/100 lb	Seed Treatment





WISCONSIN MADISON

WISCONSIN

Root Rot & Damping Off Diseases 2022 Summary Hancock ARS – Fusarium inoculation study on 'Hystyle'

- Seed-applied treatments more effective and consistent than in-furrow treatments with inoculated trial
- Vibrance seed treatment (alone) and Vibrance seed treatment with in-furrow of Ridomil Gold were best treatments at reducing Fusarium disease in 'Hystyle'
- Best yielding treatments included in-furrow Velum Prime, Quadris, Ethos, XSK03

Red Kidney bean - Root Rot & Damping Off Diseases

- Hancock ARS 2022
- Inoculated trial Fusarium solani f.sp. Pisi
- Inoculum applied over top of seed row at time of planting (infested barley)
- Fusarium severity scale (0-5)
- 'Montcalm' red kidney bean cultivar

Red Kidney bean - Root Rot & Damping Off Diseases

Planted June 9, harvested August 22

Product	Rate		Timing
Non-treated Control	Non-Inoculated		
Non-treated Control	Inoculated		NA
Chippewa Valley Bean			Seed Trt
		3.2 ml + 6	5
Ridomil Gold + Quadris	0.42 fl oz + 0.8 fl oz	ml	IFAP
Quadris	0.8 fl oz/1000 rf	6 ml	IFAP
Howler in-furrow	5 lb/A	12.5 g	IFAP
Howler in-furrow	2.5 lb/A	6.25 g	IFAP
Theia 3 lb/A in-furrow	3 lb/A	7.5 g	IFAP
Propulse	6.0 fl oz/A	1 ml	IFAP
Propulse	8.0 fl oz/A	1.32 ml	IFAP
Propulse	10.0 fl oz/A	1.65 ml	IFAP

Red Kidney bean - Root Rot & Damping Off Diseases

All treatments significantly reduced disease compared to inoculated non-treated control

Treatment and Rate		Harvested Yield (lbs)	Emergen ce % (28 DAP)	Root Lesion Rating (%)	Root Lesion Incidenc e (%)
Non-treated Control	Non-Inoculated	6.5	68.4b	0.34a	32.5a
Non-treated Control	Inoculated	5.7	39.7a	1.13b	80.0b
Chippewa Valley Bean	Seed Treatment	7.4	74.7b	0.38a	35.0a
Ridomil Gold + Quadris	0.42 fl oz + 0.8 fl oz	7.9	70.0b	0.45 a	37.5a
Quadris	0.8 fl oz/1000 rf	7.2	75.2b	0.38a	30.0a
Howler in-furrow	5 lb/A	7.5	71.2b	0.38a	37.5a
Howler in-furrow	2.5 lb/A	6.5	71.6b	0.33a	32.5a
Theia 3 lb/A in-furrow	3 lb/A	8.1	68.0b	0.38a	32.5a
Propulse	6.0 fl oz/A	8.0	69.2b	0.40a	37.5a
Propulse	8.0 fl oz/A	8.8	70.5b	0.50a	45.0a
Propulse	10.0 fl oz/A	7.8	71.0b	0.33a	32.5a

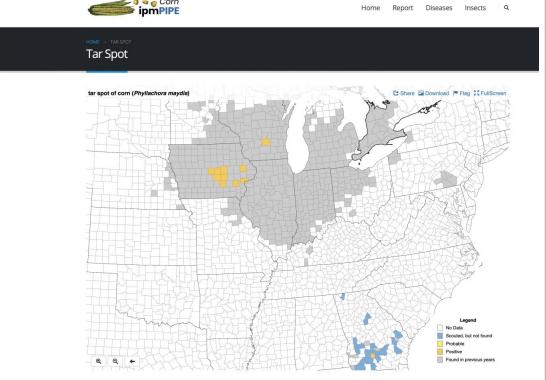
Acknowledgements

- Midwest Food Processors Association
- Agrichemical industry partners
- USDA IPM pipe
- Wisconsin Potato & Vegetable Growers
 Association

University of Wisconsin Vegetable Disease Website (newsletter access) https://vegpath.plantpath.wisc.edu/

Dr. Yu (Monica) Chen Julia Wild Madalyn Frank UW-Hancock Agricultural Research Station staff

SWEET CORN VARIETY RESISTANCE TO TAR SPOT


Amanda Gevens & Stephen Jordan

UW-Madison Plant Pathology

Sweet Corn Tar Spot Variety Trial Introduction

- All varieties resulted in high incidence of tar spot in late planting
- Photo below by K. Wise

Map of U.S. counties where tar spot was confirmed on July 7, 2022. Map source: https://corn.ipmpipe.org/tarspot/

Sweet Corn Tar Spot Variety Trial Introduction

- recent U.S. occurrence (~ 5 years)
- potential for significant crop reductions and economic losses (up to 60 bushels/acre reduction)
- reduced photosynthesis during grain fill
- fungal pathogen *Phyllacora maydis*
- symptoms include small raised black and circular spots on leaves, stalks husks
- disease can vary based on weather, inoculum load, and cultivar

These black and circular spots are known as fungal fruiting structures called stromata, each of which can produce thousands of spores. (photo by Dan Quinn)

Sweet Corn Tar Spot

Symptoms can vary and can look a bit like rust

Photos from Ohio State Univ. Extension

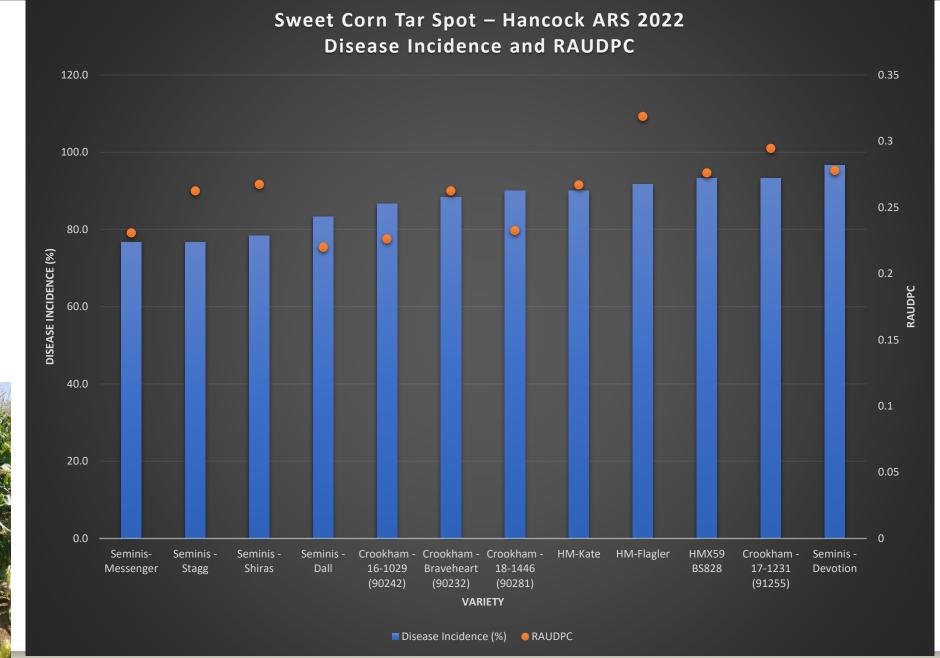
303

Sweet Corn Tar Spot UW-Hancock ARS Variety Trial – 2022 Field – K16

Planting date July 12, 2022

- 1. HMX59 BS828
- 2. HM-Kate
- 3. HM-Flagler
- 4. Seminis- Messenger
- 5. Seminis Devotion
- 6. Seminis Dall
- 7. Seminis -

Stagg


8. Seminis -

Shiras

- 9. Crookham Braveheart (90232)
- 10. Crookham 17-1231 (91255)
- 11. Crookham 18-1446 (90281)
- 12. Crookham 16-1029 (90242)

Acknowledgements

- Midwest Food Products Association
- Agrichemical industry partners
- Seed partners
- Wisconsin Potato & Vegetable Growers
 Association

University of Wisconsin Vegetable Disease Website (newsletter access) https://vegpath.plantpath.wisc.edu/

Dr. Yu (Monica) Chen
Julia Wild
Madalyn Frank
UW-Hancock
Agricultural Research
Station staff

